|
深度学习在裸地扬尘源监测中的应用研究邱昀1姜磊1,2李金香1,2李令军1,2刘保献1,2鹿海峰1,2沈秀娥1,2孙爽11. 北京市生态环境监测中心2. 大气颗粒物监测技术北京市重点实验室
摘要:裸地是扬尘的重要来源,施工建设过程中形成的裸地极易在大风天气作用下造成扬尘污染。因此,快速、有效地定位裸地位置,并确认其管控措施落实情况,对于开展裸地扬尘源监管具有重要意义。基于高分辨率遥感监测数据,结合人工解译裸地扬尘源数据集,以北京市大兴区为例,利用深度学习方法对裸地和防尘网覆盖裸地进行分类识别。同时,利用颜色匹配法对大兴区防尘网覆盖裸地进行识别,横向评估深度学习方法的识别精度。结果显示:深度学习方法对防尘网覆盖裸地的识别精度达97%,对裸地的识别精度达61%;颜色匹配法对防尘网覆盖裸地的识别精度达85%。防尘网覆盖裸地的颜色特征鲜明,深度学习方法和颜色匹配法对防尘网覆盖裸地的识别精度都在85%以上。深度学习方法对于面积大于2 000 m2的图斑有着较好的识别精度。深度学习方法可以提高裸地遥感解译的效率,实现规范化图像识别,可以作为人工判读的辅助手段。在实际应用中,可通过进一步积累样本来增强模型性能。深度学习方法适用于裸地扬尘源线索快速发现、工地防尘网措施落实情况快速检测等场景。
|
|