找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 86|回复: 0

基于残差神经网络的鸡蛋分类识别研究

[复制链接]

1

主题

0

回帖

5

积分

新手上路

积分
5
发表于 2024-4-26 08:11:51 | 显示全部楼层 |阅读模式
探究残差神经网络(residual network,ResNet)对不同种类鸡蛋的分类效果,明确深度学习应用存在智能鸡蛋巡检装置的可行性,为家禽养殖智能化进程提供新思路,并为鸡蛋分类研究提供数据支撑。【方法】在鸡舍实地取样,采用自适应矩估计优化器(adaptive moment estimation,Adam)以微调最后1层、微调所有层和重新训练所有层3种迁移学习策略分别训练,并通过调整模型权重参数及改变学习率的方式训练出最佳分类模型。【结果】得到识别准确率高达98.971%的鸡蛋分类模型。计算出模型在数据集上的各类评估指标,并借助混淆矩阵及语义特征降维可视化,分析出鸡蛋分类识别中易被误判的类别及语义。该模型部署后实时性良好,满足实际需求。【结论】鸡蛋的分类识别中光照条件是关键影响因素,应尽可能使鸡舍光照稳定均衡。针对六类鸡蛋,微调所有层并调整学习率参数为0.6可得最佳模型,其在鸡舍场景下分类效果优良,尤其是颜色语义,应用于智能鸡蛋巡检装置,可有效降低人力成本。后续研究中应注重畸形蛋及软壳蛋的记录,为进一步优化提供数据支撑。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|物联网论坛|物联网BB|物联网之家|农业物联网|气象物联网|冷链运输物联网

GMT+8, 2025-5-19 03:54 , Processed in 0.031250 second(s), 19 queries .

Powered by Discuz! X3.5

Copyright © 2001-2023 Tencent Cloud.

快速回复 返回顶部 返回列表